
 

 

 

 

COVER NOTE: ROAD SAFETY ENFORCEMENT REVIEWS    10 January 2025 

Phase 1: Academic Enforcement Review (completed by Newcastle University in April 2024) 

The appended review was financed from the former Police, Fire and Crime Commissioner’s 

road safety fund, on behalf of the York and North Yorkshire Road Safety Partnership. It is a 

complex, statistical study which was produced for use by experienced road safety 

practitioners. 

The review’s primary objective was to assess the effectiveness of the current enforcement 

strategy (mobile safety camera vans) on mitigating the frequency and severity of road traffic 

collisions, involving personal injury on the roads within York and North Yorkshire.  

The review was based on a sample of 50 sites1 selected across York and North Yorkshire, 

featuring a mix of speed limits and urban/rural settings. Sites were selected based on the 

availability of substantial data to support a robust analysis of collisions over the past 

decade. The aim was to assess the overall effectiveness of the current approach, rather than 

to identify the need for alternative enforcement methods at specific sites.  

The review reported that the current enforcement approach using mobile safety camera 

vans had significantly reduced casualties from road traffic collisions. It concluded that there 

is a case for further study into the merits of introducing average/fixed speed cameras in 

York and North Yorkshire as it was noted that fixed cameras (in other areas) have shown 

similar success in reducing road traffic collisions and public perception of average speed 

cameras is more positive than traditional (fixed) cameras, but they are the costliest to 

operate. 

Following this, the Road Safety Partnership has agreed to commission a further study 

(Phase 2) commencing in 2025, to determine the economic sustainability and effectiveness 

of a blended enforcement approach including some average and/or fixed speed cameras.  

Phase 2: Enforcement – Economic Investment Appraisal (commencing in January 2025) 

Would the introduction of fixed and/or average speed cameras be effective in reducing 

collisions in York and North Yorkshire? and if so 

Can this be achieved through a sustainable self-financing funding model that covers 

operational costs and provides income to invest into further partnership casualty reduction 

activity and initiatives?  

This appraisal will help establish prioritised site selection criteria to identify the optimal 

locations for fixed and average cameras, should they be deemed effective in further 

reducing collisions in York and North Yorkshire. 

 
1 there are over 800 live mobile safety camera van sites across York and North Yorkshire 
 



At present, there has been no formal partner engagement or collective partnership 

endorsement of the introduction of fixed and/or average cameras in York and North 

Yorkshire. Therefore, once Phase 2 is complete, road safety partners will be able to consider 

these findings and next steps. 

Roles and Responsibilities 

Enforcement of all speed offences, including those detected by safety cameras, is the 

responsibility of North Yorkshire Police.   

As local highway authority, installation of any infrastructure on the local road network, 

including fixed and average speed cameras, would require local authority approval.  

Similarly, local authorities cannot install them without police approval.   

In those areas across the Country, where fixed and average speed cameras operate, they do 

so under a partnership approach, with the police still retaining their lead authority 

enforcement function.   
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Executive Summary

In this report we perform extensive analyses on raw collision data provided by North Yorkshire

Council, mapped to 50 designated mobile road safety camera sites across North Yorkshire and the

City of York and dating back to the year 2000. We also analyse data on speeding violations provided

by North Yorkshire Police. One aim of this report is to provide a thorough evaluation of mobile road

safety cameras across North Yorkshire and the City of York since 2013, with a detailed literature

review providing some context in terms of similar evaluations in other jurisdictions, both in the UK

and further afield. The literature review also compares the effectiveness of mobile safety cameras

to other speed enforcement systems, including fixed safety cameras, average speed cameras and

TASCAR.

An exploratory data analysis reveals interesting and important features in the data, including signif-

icant trends in collisions and casualties through time; some evidence of regression to mean (RTM);

and noticeable changes depending on time of year, pre/post camera deployment period, urban/rural

location, council area and local authority. Such features in the data support an empirical Bayes

modelling approach to evaluate the effectiveness of the mobile safety cameras. Specifying 5-year

pre/post deployment periods reveals that after accounting for confounding effects of RTM and

trend, since 2013 mobile safety cameras in North Yorkshire and the City of York have resulted in a

36% reduction in casualties as a result of road traffic collisions, with an average value of preven-

tion of around £11.3 M. Preliminary analyses of data on speeding violations reveals an association

with data on collisions, and statistical modelling potential that could support a more proactive

approach to the identification of road safety hotspots. We note that there are a small number of

sites that warrant further investigation, with a significant increase in collisions and casualties post

deployment.

In the context of other mobile safety camera evaluations, the evaluation of cameras in North

Yorkshire is extremely positive. In the UK, typically casualty reductions of between 30%–40% are

noted; however, we report just a 20% reduction in a previous study of mobile safety cameras in

North Yorkshire and just a 7% reduction in a study of mobile cameras in the Northumbria Police
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Force area. Further afield, a 20% reduction in collisions was estimated in a survey of mobile safety

cameras in Tallinn, Estonia.

Although studies on fixed cameras reveal (on average) a similar level of success to mobile cameras,

studies on the effectiveness of fixed cameras are more plentiful in the literature. The public

perception of average speed cameras is more positive than traditional (fixed) cameras, in terms of

their effectiveness, with supporting evidence of their efficacy. Although it is accepted that average

cameras have the most significant impact on the reduction of speed-related collisions, they are the

most costly to operate. We believe there is a case for further study into the merits of average

speed cameras in North Yorkshire; with the caveat that a mix of fixed and average speed cameras

may be required to ensure a sustainable business model.
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1 Introduction and Background

Road casualty or collision reduction is a key aim of transport policy and relies heavily on the im-

plementation of effective road safety countermeasures at known collision hotspots. This usually

requires significant financial investment from finite available budgets. Road safety practitioners

are therefore very keen to understand the impact that these countermeasures are having, partic-

ularly for guiding future investment decisions. Building on previous collaborative work between

the Newcastle University Statistics & Road Safety Group (NUSRG) and North Yorkshire Police

(NYP)/North Yorkshire Council (NYC) (see Section 1.2 for full details), in this report we investi-

gate the effectiveness of mobile road safety cameras in the council areas of North Yorkshire and the

City of York (often collectively referred to as “North Yorkshire” in this report) in reducing speed in

the area, and therefore reducing the frequency and severity of road traffic incidents. There are two

major contributions to this report: (i) A comprehensive analysis of data provided by NYP/NYC,

linked to sites at which mobile speed detection systems have been deployed; (ii) a literature review

element that aims to contextualise the findings from our data analysis and extend our investigation

to consider other speed enforcement systems currently in use in the UK, including fixed unmanned

instantaneous speed cameras, average speed cameras and Temporary Automatic Speed Cameras

At Roadworks (TASCAR).

In particular, through our data analysis and literature review, the report will address questions

including:

To what extent do safety camera/hand-held deployments prove effective in mitigating excessive

speed and other offenses that fall within the category of the fatal 5? How effective are mobile

speed detection systems in general (for example, across the UK) based on a review of the

existing evidence?

Is it appropriate to implement other enforcement systems, such as fixed cameras and/or average

speed cameras in York and North Yorkshire, to enforce speed limits and eliminate anti-social road

use, and how do these compare in terms of efficacy?

1.1 Methods and Data

Given the skills of the NUSRG team, comprehensive literature reviews will be performed to both

contextualise any findings from our data analyses relating to the use of mobile safety cameras

in North Yorkshire, but also to examine the effectiveness of such countermeasures relative to

other speed enforcement systems currently in use in the UK. In the main body of this report, key

references will be highlighted at various points in the discussion; however, the reader is referred to

Section 3.1 for a more detailed evaluation of relevant literature. Publications from both academic

and practitioner-focused literature will be surveyed, including official reports and magazine articles.

Similarly, only brief descriptions of any statistical methods used will be given in the main body

of the report, with the reader being referred to Appendix A.2 and external references for full

methodological details should they be interested. Generally, all data analysis methods have been

tried-and-tested with data provided by other local authorities and practitioner partners, including
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collaborators at the Traffic Accident Data Unit at Gateshead Council; Buckinghamshire County

Council, in partnership with consulting firm Agilysis; National Highways; Traffic Scotland; the

Estonian Transport Administration; and the US State Department of Transportation in New York.

However, the abundance of data provided by NYP and NYC in this current study has resulted in

a more robust treatment of, for example, regression-to-mean (RTM) and trend (see for example,

Hauer (1980) and Appendix A.1).

General methods include basic data exploration with appropriate numerical and graphical summaries

for visualisation through to advanced modelling techniques, utilising a Bayesian estimation frame-

work to perform predictive analytics and uncertainty quantification. Where relevant, NUSRG’s road

safety analytics dashboard RAPTOR will be used (Reactive Analytic Predictive Toolkit for Road

safety), providing many of the graphics used in this report and an interactive summary dashboard

for readers. The most relevant external references for the statistical methods used in this report

are Fawcett and Thorpe (2013); Fawcett et al. (2017), and Matthews et al. (2019).

For the current project, we have the co-ordinates of 50 sites at which mobile safety cameras have

been deployed at some point since the year 2013; see Fig. 1 for a map of these locations across the

North Yorkshire region. These data have been provided by colleagues at NYP. We have the precise

date on which these sites became ‘active’, that is, the date on which a mobile speed detection

system started being used; we also have the site descriptors shown in List 1 below.

Figure 1: Map showing the locations of all 50 mobile safety camera sites in North Yorkshire/City

of York. The colour used indicates the year in which the site became “active”.

6

https://keithnewman.shinyapps.io/north-yorkshire-collision-dashboard/


- - - List 1: Data for our 50 designated mobile safety camera sites - - -

Data provided by NYP

• Date on which the site became active

• The Local Authority in which the site resides

• The speed limit at the site

• The type of enforcement vehicle used at the site, since the site became ‘active’: ‘Big
van’/‘Small van’/‘Motorcycle’/A combination of these vehicles

• Site type: ‘Killed or Seriously Injured’/‘Community Concern’/‘Displacement’

Data provided by NYC

• Annual collision counts dating back to the year 2000; also casualty counts, cate-
gorised by severity: “Slight”/“Serious”/“Fatal”

• Causation factors associated with collisions, including “Vehicle Factor”, “Hazard in
Carriageway”, “Light Condition”, “Road Surface”, “Weather Condition”

• Road classification (A/B/Unclassified)

• Urban/Rural identifier

• Council area: North Yorkshire/City of York

- - - List 2: Variables associated with violations - - -

Data provided by NYP

• Precise dates and times of visits to each site

• The number of speeding violations observed at each visit

• The type of penalty issued for each violation:

– SAC: Speed Awareness Course

– CO: Conditional Offer–Fine and Points

– RFS: Report for Summons

• Data on other reported violations (for example, mobile phone usage or seatbelt
violations)

• A binary variable indicating whether or not a mobile safety camera was active at the
time of each violation

7



Colleagues at NYC have undertaken an extensive mapping exercise, allocating raw collision data

from STATS-19 records to our 50 mobile safety camera sites if their co-ordinates fell within a

500 metre catchment radius of these sites. This exercise extracted raw collisions from the year

2000 onwards; once collisions for each mobile safety camera site were obtained, raw counts were

aggregated by calendar year to give annual collision counts for each of our 50 sites (although we

can easily disaggregate, if necessary, for example to explore seasonal patterns in the data). It is

often the case that each raw collision includes multiple casualties, and so we also have annual

casualty counts for each of our 50 sites (classified by severity – “slight”/“serious”/“fatal”). In

addition to the site-specific descriptors provided by NYP shown in List 1, to help build a general

picture of road safety across the North Yorkshire road network the NYC STATS-19 data extraction

exercise also provided some further site-specific descriptors (also shown in List 1).

For each of our 50 mobile safety camera sites, NYP has also provided extensive violation data-files

relating to 19,566 monitoring incidents between 2013–2023, including data shown in List 2.

Section 2.1 provides a high-level exploratory analysis of these data in which we describe some of the

more interesting findings from our initial analysis; a full range of summaries and tables of results is

available in Appendices B and C.

1.2 NUSRG/North Yorkshire Previous Collaboration: Mobile Cameras

Evaluation of road safety countermeasures is often performed through B/A (B/A) comparisons of

casualty or collision rates pre/post intervention; for example, comparisons of collision counts at a

particular location during a fixed period before, and after, the deployment of a mobile road safety

camera. However, such simplistic analyses are vulnerable to the effects of confounders, specifically

regression-to-mean (RTM) and trend (see for example, Hauer (1997), and the discussion in Ap-

pendix A.1), and failure to account for the effects of such confounders has been shown to seriously

over-estimate the effectiveness of road safety countermeasures. Between 2011-2012, NUSRG de-

veloped novel methods for separating genuine treatment effects from the effects of confounders

such as RTM, with these methods being embedded within their road safety analytics dashboard

RAPTOR; see Thorpe and Fawcett (2012) and Fawcett and Thorpe (2013) for a discussion of

the underpinning methodology and an application to mobile safety camera data in the Northum-

bria Police Force area, and Matthews et al. (2019) for a description of the NUSRG RAPTOR

dashboard.

In 2016, NUSRG conducted a retrospective, small-scale B/A analysis of data from 22 sites in North

Yorkshire at which mobile safety camera vans had been deployed, with equal-length B/A periods

between 2011-2014. Although a 28% raw reduction in casualties was observed after the deployment

of the mobile safety cameras, NUSRG estimated a reduction owing to the cameras to be just 20%

after accounting for the effects of RTM and general trends. Full findings are available in the

2017 report Newcastle University Evaluation of Mobile Road Safety Cameras in North Yorkshire:

Summary of Methods and Key Findings (North Yorkshire Police, 2017). A similar analysis of 56

mobile safety camera sites in the Northumbria Police Force region, performed by NUSRG, reported

a 32% raw reduction in casualties post-intervention, reducing to just 7% attributable to the cameras

themselves after accounting for RTM and trend (see Fawcett and Thorpe (2013)). Across the

UK, where analyses have been performed to separate genuine treatment effects of mobile safety

cameras from those of RTM and trend, treatment effects anywhere between a 2% reduction and a
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40% reduction in casualties have been reported, although typically we might see reductions owing

to the cameras of between 20-30% (see, for example, Hirst et al. (2004)).

Following the original evaluation of mobile safety cameras in North Yorkshire between 2011-2014,

NYP expanded their fleet of safety camera vans to further reduce the number of collisions, deaths,

and serious injuries on the region’s roads; for full details, see Public report by the North Yorkshire

Police & Crime Commissioner: Making North Yorkshire’s Roads Safer (Police and Crime Com-

missioner North Yorkshire, 2017). A subsequent collaboration with NUSRG consisting of a 3-year

B/A analysis, 2014-2017/2017-2020, revealed an improving picture regarding the effectiveness of

mobile safety cameras in North Yorkshire, rising from a 20% reduction in casualties in our trial

analysis on data from 2011-2014 to a 24% overall reduction in casualties at the same 22 locations

in the updated analysis.

1.3 Structure of This Report

In Section 2 we perform detailed data analyses of the collision and violations data described in

Lists 1 and 2 on page 7. Specifically, we perform a basic exploratory analysis on the casualty and

collisions data (Section 2.1.1), as well as the violations data (Section 2.1.2). We then perform

a more detailed statistical analysis to investigate the effectiveness of the mobile safety cameras

at the 50 designated signs shown in Fig. 1 (Section 2.2.1), as well as a more in-depth analysis

of the violations data (Section 2.2.2). We then set our North Yorkshire mobile safety camera

evaluation in the context of other such evaluations (Section 2.3), before presenting the results of a

more detailed literature review in which the efficacy of mobile safety cameras is set alongside that

of fixed speed cameras and average speed cameras (Section 3). We complete this report with a

summary of our findings in terms of prioritising the use of different speed camera deployments.

9

https://www.northyorkshire-pfcc.gov.uk/content/uploads/2018/09/Report-Making-North-Yorkshires-Roads-Safer.pdf
https://www.northyorkshire-pfcc.gov.uk/content/uploads/2018/09/Report-Making-North-Yorkshires-Roads-Safer.pdf


2 Data Analysis: Mobile Safety Cameras in North Yorkshire

In Section 2.1 we perform basic exploratory data analyses using the data-files provided by NYP

and NYC (as outlined in Section 1.1). A high-level overview of our findings is reported here,

with the most interesting plots and patterns in the data discussed; see our interactive summary

dashboard for a full suite of plots. The aim here is to give an overview of the datasets we are

working with and to form initial insights that support our more detailed analyses in Section 2.2,

in which we use statistical methods to identify genuine effects attributable to the mobile safety

cameras deployed in both the collision and violations datasets. In Section 2.3 we then draw on our

literature review to contextualise our data analyses, in terms of how our conclusions from this, and

previous collaborations with colleagues in North Yorkshire (see Section 1.2), compare to mobile

safety camera studies in other parts of the UK.

Data cleaning/potential data issues

Note that, of the 50 mobile safety camera sites discussed in Section 1.1 and displayed in Fig. 1,

one site was removed altogether due to it having no collisions allocated over the full observation

period 2000–2023. Also, two raw collisions did not map to any of our designated mobile safety

camera sites, and of the 19,566 monitoring incidents in the violations data-files, 26 incidents were

discarded due to the recorded length of time of a monitoring incident being 0 minutes. Other than

this, no issues were found with the data as provided by NYP and NYC.

Throughout this section we are assuming raw collision data have been recorded accurately, specifi-

cally their longitude and latitude. These co-ordinates have been used in the initial mapping exercise

by NYC to allocated collisions to mobile safety camera sites; our subsequent analyses cannot ac-

count for changes in the quality of such spatial mapping through time.

2.1 Exploratory Data Analysis

2.1.1 Collision/casualty data

In this section we perform exploratory data analyses on both collisions and casualties, although

attention is drawn to casualties as this is the main focus of our analysis in Section 2.2.1: Any

modelling aimed at identifying a treatment effect might then proceed to a costing exercise (see

towards the end of Section 2.2.1), in which casualty severity plays an important role.

Trend and mean reversion

Fig. 2 shows time series plots of annual casualty counts, since the year 2000, averaged over our full

raw collision dataset obtained from STATS-19 (top-left); it also shows raw counts through time

for three of our 49 mobile safety camera sites (a full suite of plots, for each site, can be accessed

via our dashboard). Obvious from most of these plots are the decreasing trends in counts, which

in many cases are statistically significant (i.e. p = 6.14 × 10−15 for the negative trend displayed
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in the plot for all sites) and almost linear through time; see, in particular, the plot for all sites.

However, there are site-specific deviations from this general global trend; for example, the plot for

the A65 Skipton site displays a far less significant trend in casualties than we see across the road

network generally, and at the A64 Middlecave site there might be some evidence of an increasing

trend in casualties through time. From an analysis point-of-view, and in particular our work in

Section 2.2.1, identifying such general and site-specific trends is extremely important, especially

any significant trend that was present throughout the time before a mobile safety camera site

became “active”: Assuming this trend is decreasing and would have continued into the period

after site activation, any estimation of treatment effect via a pre/post comparison of casualty data

is prone to exaggeration if such trend is not properly accounted for.

Also evident from the time series plots in Fig. 2 are the effects of RTM through time (see Appendix

A.1 for a full account of RTM). For example, the 7 casualties observed at the A64 Westbound

Murton site in 2010, which are immediately followed by zero count casualties – or at least, counts

that lie within the 95% confidence bands of the expected trend line. More generally in these time

series plots, for many sites we often see abnormally high casualty counts being followed by counts

that are back in-line with the expected trend (or below).

In similar studies conducted by the NUSRG team, including their earlier collaboration with NYP

(see Section 1.2), such longitudinal data has not been available. It is more often the case that data

from reference sites and other sources must be sought in order to account for the contribution of

trend and RTM in any pre/post treatment analysis; although statistical tests are available to help

ensure trends observed from other sources are applicable to the safety camera sites being studied,

such a “leap of faith” does of course add extra uncertainty to any analysis (with such uncertainty

propagating through to any estimated treatment effects).

Fig. 3 shows the same information as that in Fig. 2, but for casualty counts broken down by their

severity. Considering average counts across all sites, we still observe negative trends through time,

for both slight and serious casualties; numbers are too small and data to few too discern any real

trends in fatal casualties. The same might be said for site-specific casualty counts, regardless of

their severity; as the other plots in Fig. 3 show, at a site level counts are too small and data too

few to detect any real trends. However, evident here might be the effects of RTM; for example, at

the A64 Westbound Murton, the unusually high casualty count in the year 2001 perhaps reverting

to an underlying mean level in subsequent years.

Although not shown in the main body of this report, time series plots could be produced at

the local authority level. At both a site and local authority level, thankfully collisions leading

to serious casualties and fatalities are relatively relatively rare occurrences. However, there are

some interesting observations to make – for example:

• In Ryedale in 2009 there were more than three times as many serious casualties as slight
casualties. There was also a relatively large number of fatal casualties in Ryedale in 2013

(but with much fewer since then)

• York observed its lowest annual count of slight casualties in 2017, but since then there has
been an increasing trend, which is statistically significant (p = 0.034)

• Richmondshire appears relatively safe, with a maximum 6 slight casualties in 2016 and only
ever seeing one serious casualty
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Figure 2: Time series plot showing total annual casualties across all sites, between the years 2000–

2023 (inclusive; top-left); and for three of our 49 mobile safety camera sites selected at random.

The blue line indicates a fitted trend line, with associated 95% confidence intervals given by the

shaded region around this line. The red vertical (dotted) lines indicate the boundary of the B/A

periods.
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Figure 3: Time series plot showing total annual casualties across all sites, between the years 2000–

2023, disaggregated by casualty severity (inclusive; top-left); and for three of our 49 mobile safety

camera sites selected at random.
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Seasonal variability

It could be that time of year, or season, might play an important role in casualty or collision

prediction and might therefore inform any analyses we perform. Fig. 4 shows total casualties by

month of the year, and disaggregated by casualty severity. There are some changes noticeable

according to the time of year, with some statistically significant differences in casualty counts

between months. For example, performing an Analysis of Variance on monthly total casualty

counts indicates significant changes (p = 0.025); as does an analysis investigating changes in

slight casualties across months (p = 0.045). However, no significant monthly changes are detected

when looking at casualties in the serious or fatal categories (p > 0.1 in both cases). In terms of

total casualties, follow-up test procedures indicate a higher number of casualties–on average–in the

months of July, August and December, with some noticeably high counts detected as significant

outliers in March and July. In other studies conducted by the NUSRG team, where significant

deviations in casualty or collision counts by season have been identified, seasonal structure in

the data has then been exploited in the modelling to lend increased precision to the analysis; for

example, see the dynamic linear model analysis of collision data in Florida, discussed in Hewett et al.

(2023), and the random effects analysis of UK collision data in Hewett (2023). However, both

of these studies covered a substantially larger geographic area and thus monthly collision counts

were much higher than what we see in Fig. 4; even where significant seasonal deviation has been

identified, the scale of the data might make analyses on (for example) monthly disaggregations

difficult.
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Figure 4: Boxplots of total casualties across all sites, for the years 2000-2023 (inclusive), by month

of year (left); barplots showing monthly casualties disaggregated by casualty severity (right).

Before/After and other comparisons

Our analysis in Section 2.2.1 formally evaluates the effectiveness of the mobile safety cameras

deployed throughout North Yorkshire; here, we make informal assessments using simple graphical

and numerical summaries of our data, including casualty counts before and after the implementation

of a mobile safety camera (we use 5-year before and after periods), but also according to data on

some other variables shown in List 1, to assess the suitability of these variables in the modelling

approach adopted in Section 2.2.1.
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Fig. 5 and Table 1 show, on average, higher casualty counts in the period before safety camera

implementation than in the period after, with significantly reduced variability in our data in the

after period. At a site-level, we might (again, informally) get a handle on any treatment effect

owing to the mobile safety camera by examining time series plots such as those shown in Figs. 2

and 3; for example, the plot for the A64 Westbound Murton in Fig. 2 might be indicative of a

treatment effect, with casualties reducing to zero every year after the site became live.

Similarly, raw counts seem higher in urban areas than rural, and in sites within North Yorkshire

Council than those in the City of York (although, on average, counts are higher in the City of

York). Performing simple hypothesis tests in each of these cases (for example, Mann-Whitney

tests) reveals that the difference in median casualties between B/A treatment, between urban and

rural locations, and between locations in North Yorkshire and City of York councils to all be highly

statistically significant (p = 4.25 × 10−11, p = 8.60 × 10−9 and p = 7.8 × 10−4 respectively).
A Kruskal-Wallis test again shows a highly statistically significant difference in average casualty

counts between local authorities (p = 1.49 × 10−14). A post-hoc Dunn test reveals Harrogate,
Scarborough and York to have statistically significantly higher rates of casualties compared with

the other local authorities, with Scarborough significantly higher than Harrogate, although neither

significantly different from York. Detecting such associations paves the way for building regression

models in Section 2.2.1.
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Figure 5: Boxplots of annual casualties across all sites, for the years 2000-2023 (inclusive), shown

by period (before/after mobile safety camera implementation; top-left); urban/rural identifier (top-

right); council area (bottom-left); and local authority (bottom-right).
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Mean St. Dev. Range

Treatment Before 1.70 2.54 (0,19)

After 0.75 1.32 (0,8)

Area Urban 1.81 2.66 (0,19)

Rural 1.03 1.78 (0,12)

Council City of York 1.67 1.80 (0,9)

North Yorkshire 1.39 2.33 (0,19)

Table 1: Summaries of casualty counts for the years 2000-2023 across all mobile safety camera

sites.

Collisions

Throughout this exploratory data analysis section so far, we have focused on casualties as opposed

to collisions. Here, we are looking ahead to our analysis in Section 2.2.1 in which we model

casualties, and assess the deployment of mobile safety cameras in terms of casualties, in order to

extend our analysis to consider casualty severity and the associated costs of prevention. Fig. 6

shows the same information as Fig. 5, but for collisions rather than casualties. As we might expect,

these plots are very similar: We see, on average, higher collision counts in the period before safety

camera deployment than in the period after, with reduced variability in the after period; we see

higher collision counts in urban areas compared to rural areas; higher counts (on average) in the

City of York compared to North Yorkshire (although some higher raw counts in North Yorkshire);

and similar differences in collisions between local authorities as we noted for casualties in our earlier

discussion.
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Figure 6: Boxplots of annual collisions across all sites, for the years 2000-2023 (inclusive), shown

by period (before/after mobile safety camera implementation; top-left); urban/rural identifier (top-

right); council area (bottom-left); and local authority (bottom-right).
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2.1.2 Violations data

For exploratory analysis purposes, we standardise the number of violations (see List 2 on page 7 of

this report) by the length of the monitoring period in minutes, to calculate the violations per hour

(VPH):

VPH = 60×
Violations

Minutes
.

Comparing VPH across monitoring periods taken with and without a camera being present, gives

the results shown in Fig. 7. Although for some local authorities we do not have data for our 5-year

before periods (Harrogate, Richmondshire and Selby), looking at the boxplots for sites across the
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Figure 7: Boxplots showing the derived VPH for incidents where a camera was present (TRUE) or

not present (FALSE); broken down by local authority (top) and month (bottom).
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other five local authorities shows a clear reduction in VPH during periods when safety cameras

were active – espeally for Craven, Hambleton and Scarborough (and here we have statistically

significant decreases in VPH, with p < 2.2×10−16 for each test). It is worth noting that there are
many outliers across these boxplots, usually due to short recording windows (e.g. the highest VPH

with a camera corresponded to a monitoring window of 15 minutes which observed 61 violations).

Checking for seasonal differences, Fig. 7 also shows very little deviations in VPH from month-to-

month, with similar changes between periods when cameras were/were not present noted for each

month of the year. A more detailed analysis of the violations data will be considered in Section

2.2.2.

2.1.3 Summary

The aim of the exploratory data analysis presented in this section was to investigate, informally,

any patterns in the datasets on casualties, collisions and violations with a view to supporting the

more formal analyses in Section 2.2. Of course, given the size of the datasets and the number

of variables present, there are many more plots and summaries that might have been produced

than we discuss in this section of the report; here, we focus on the most interesting patterns and

assoations, but readers are referred to our interactive dashboard for more summaries. Some key

findings include:

• Significant trend in total casualty and collision counts through time at many of our mobile
safety camera sites, and across the network of mobile safety camera sites as a whole. More

often than not this trend is decreasing through time, but for some sites we have an increasing

trend (for example, increasing casualties at the A64 Middlecave site; and in the ty of York

since 2017).

• The time trends observed across total casualty counts are reflected in those observed for slight
and serious casualties, when aggregating across all mobile safety camera sites. However, it is

difficult to detect anything meaningful in terms of trends in fatal casualties; similarly, trends

in any casualty severity classification at a site level are difficult to detect due to sparsity of

data.

• Some evidence of RTM at many sites, with apparently abnormally high counts in casualties
or collisions being immediately followed by counts that are consistent with the overall trend

observed at these sites.

• Some significant differences in total casualty and collision counts according to month of the
year; similarly for slight casualty counts. The months of July, August and December seem

to have the highest number of casualties and collisions, with significantly high outliers also

being observed in March and July.

• On average, higher casualty and collision counts are observed in our 5-year before periods
than in our 5-year after periods. These differences are statistically significant. Although

some reduction is bound to be due to trend and RTM, ad discussed above, there might also

be some reduction due to the effects of the mobile safety cameras themselves (which we will

investigate further in Section 2.2.1).
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• On average, casualty and collision counts are higher in urban areas than in rural areas, with
these differences being statistically significant.

• Casualty and collision counts are higher, on average, in the City of York council area than
they are in the North Yorkshire Council area. However, we observe some larger raw casualty

and collision counts in the North Yorkshire Council area, with bigger outliers.

• Some significant differences in casualty and collision counts are noted between local authority
areas; in particular, Harrogate, Scarborough and York appear to have significantly higher rates

of casualties and collisions than the other local authorities.

• In terms of violations, in order to make relative comparisons we work with violations per hour.
Looking at our VPH data across different local authorities and different months of the year,

we see some differences between local authorities but no noticeable difference according to

VPH in different months of the year. However, where violations data are available in our

5-year before and after periods, we see significant decreases in VPH once sites within a local

authority became active – especially in Craven, Hambleton and Scarborough.

2.2 Statistical Modelling

2.2.1 Collision data

As described in Appendix A.2, in our analysis of the collision data we follow the gold standard

empirical Bayes (EB) methodology to identify any significant treatment effects due to the presence

of the mobile safety cameras at our designated mobile safety camera sites across North Yorkshire.

Given our discussion in the exploratory data analysis section (see Section 2.1.1 in particular),

our analysis will focus on the use of total casualties rather than separate analyses by casualty

severity. However, we will consider the implications of casualty severity in our subsequent analysis

investigating the value of prevention of the mobile safety cameras in North Yorkshire.

Empirical Bayes analysis: Outline

There are four main steps in our EB analysis, which we outline briefly here (but with full mathe-

matical detail being provided in Appendix A.2); note that, for each site, we take our before period

to be the five years immediately prior to the site becoming active, and the after period to be the

first five years afterwards.

1. Fit a regression model to data from untreated sites in order to predict the casualty count

at each of the camera sites in the period before the camera became active.

For example, if we focus on the A64 Westbound Murton site, shown in the top-right plot of

Fig. 2: This site became active in 2015, and so we consider data from the years 2010–2014

(inclusive) to be from our before period at this site. The purpose of fitting a regression model

to estimate casualty counts in the before period is to smooth through any abnormally high

(or low) counts we might see at our site of interest – for example, the 8 casualties observed

in the year 2010 at the A64 Westbound Murton. Typically this regression model is built using
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a pool of ’control’ or ’reference’ sites, which are distinct from the sites where cameras are

deployed (see, for example, Fawcett and Thorpe (2013)). Here, however, as we have historic

data at each of our camera sites, we can use data from the sites themselves, from a time

interval before the official 5-year before period, to build our model. So in the case of the

A64 Westbound Murton site, we use data from the period 2005–2009 to estimate casualty

counts in the before period of 2010–2014, along with similar data from all other non-treated

sites during this period.

In another example, focus on the A65 Skipton site in the bottom-left of Fig. 2, which became

active in 2017: Our official five year before period might seem abnormally safe relative to

the full casualty time series at this site, or indeed the casualty count in 2016 might seem

abnormally high – regardless, a model that has been built using data from 2007–2011 at this

site and all other non-treated sites during this period will provide an estimated casualty count

for the before period 2012–2016 that will smooth through these ‘blips’.

The model estimates the number of casualties we would expect to see at a typical site with

a given set of characteristics (those described in List 1 in Section 1.1 – for example, local

authority, urban/rural etc.), with year included as a predictor to account for any trends in time

(such as those shown in Fig. 2). This model also provides insight into which variables appear

to affect casualty counts across the network. A full table of results is given in Appendix B.1,

with a headline discussion below.

2. Use a Bayesian model to update the estimate from step 1. Although step 1 will provide an

estimate of what we might expect to see in our before period, at each site, we cannot simply

ignore the casualty counts that have been observed at these sites – even if they appeared

to be abnormally high or low. The EB approach (see Appendix A.2) produces a weighted

average of the estimated casualty count obtained from step 1 and the casualty count that

was actually observed during the before period. We take this to be our casualty count in the

before period after removing the RTM effect.

3. Adjust for trend by fitting a regression model to the data before the official 5-year before

period (the same data used to build the regression model in step 1, except just for each

individual site) which includes “Year” as a predictor. We then use the modelled effect of

“Year” at that site to adjust our estimate from Step 2 (for example, if the model says there

is an 8% reduction due to trend, we would multiply our estimate by 0.92). The result of this

is our estimated casualty count in the after period, if there had been no camera deployed.

4. Compute the treatment effect. We estimate the effect of the camera by taking the differ-

ence between our estimated value if there had been no camera deployed, obtained in step 3,

and the actual observed count when the camera has been deployed.

Empirical Bayes analysis: Headline results

Table 2 in Appendix B.1 shows the results of step 1 of our analysis. In summary, it appears that the

following variables from List 1 are all statistically significant predictors of casualties in the North

Yorkshire area:

• Road Class (Class A roads having higher casualties)
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• Local Authority (Scarborough highest, Ryedale lowest casualty rates)

• Urban/Rural indicator (urban has higher rates)

• Year (negative trend in time)

In more detail, and as examples of how we interpret this model and the results shown in Table 2:

• The sign of the estimated Road Class coefficients suggests the impact of the Road Class on
casualty counts, relative to the Road Class that has been set as a baseline (here, Road Class

A). Thus, with negative estimated regression coefficients for both Road Class B and Road

Class C (–0.4694 and –2.0482), we are less likely to see casualties for both of these Road

Classifications than we are for Road Class A, and both effects are statistically significant with

p-values of 0.0041 and 0.0112 respectively (considerably less than the usual 5% cutoff).

• The sign of the estimated local authority coefficients suggests the impact of the local author-
ity on casualty counts, relative to the local authority that has been set as a baseline (here,

local authority 1–Craven). Thus, with a negative estimated regression coefficient (–0.246),

we are less likely to see collisions in Hambleton than we are Craven, although with a p-value

of 0.2880 this is not statistically significant. However, Ryedale has the largest (negative)

estimated coefficient, which is statistically significant, indicating that casualties in Ryedale

are significantly lower than Craven and lower (on average) than elsewhere. Conversely, the

positive estimated regression coefficient for Scarborough (0.4989) indicates that we are more

likely to see collisions in Scarborough than Craven, and with a p-value of 0.0201 this is sta-

tistically significant. Further, Scarborough has the largest (positive) estimated coefficient,

indicating that casualties in Scarborough are higher (on average) than elsewhere.

• The Urban/Rural indicator has a positive regression coefficient (0.4177). Again, having used
“Rural” as a baseline, the positive coefficient suggests that we are more likely to see casualties

as a result of road traffic collisions in urban areas. Further, this is a statistically significant

finding, with a p-value of just 0.0024 (considerably less than the usual 5% cutoff).

• Globally, across all sites in North Yorkshire, there is a significant negative trend in casualty
counts.

Table 3 in Appendix B.2 shows results from steps 2–4 of our analysis, reporting:

• Raw total casualty counts in the 5-year before and 5-year after periods for each site (“before”
and “after” respectively)

• The estimated casualty count for the before period, obtained from the Bayesian model in
step 2 (“post.est”)

• The estimated “RTM” effect, obtained by subtracting “post.est” from “before”

• The estimated trend effect (“trend.effect”), obtained from step 3

• From the raw reduction in casualties (“before” – “after”), we subtract the estimated “RTM”
and “trend.effect”, to leave us with the estimated treatment effect (“treat.est”)
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• 95% confidence intervals on our estimated treatment effects to quantify our uncertainty

• Relative percentage changes in casualties due to the mobile safety cameras

An extract from Table 3 is shown below to explain some of these results in more detail. For

example:

Site before after post.est RTM trend.effect treat.est Lower Upper

30 27.00 16.00 25.50 -1.50 -0.78 -8.72 -18.93 -0.64

34 33.00 7.00 31.93 -1.07 -0.35 -24.8 -35.28 -14.57

48 2.00 4.00 2.46 0.46 -0.28 1.82 -2.13 3.37

• Site 30 (ID 6267 – B1261 - Cayton Low Road, Eastfield): There were 27 observed casualties
in the before period (2012-2016) and 16 in the after period (2018-2022)

– This gives an overall raw decrease of 11 casualties

– The Bayesian model suggests around 1.50 of this difference is due to RTM (a small

effect), and would not have happened anyway – the difference between the raw “before”

value and the “post.est” from the EB analysis

– Our analysis for this site also suggests that a further 0.78 casualties would not have

happened anyway due to trend

– Thus, the estimated treatment effect for this site is 11 – 1.50 – 0.78 = 8.72 casualties,

reported as –8.72 to indicate a reduction in casualties

– This is our mean estimated treatment effect; after accounting for uncertainty, our 95%

confidence interval around this mean is (–18.93, –0.64). As this is wholly negative

(only just!), we might say that our treatment effect is statistically significant

• Site 34 (ID 6151 – A61 Leeds Road): This site saw the greatest reduction in casualties.
There were 33 observed casualties in the before period (2011-2015) and 7 in the after period

(2017-2021).

– This gives an overall raw decrease of 26 casualties

– The Bayesian model suggests around 1.07 of this difference is due to RTM (a small

effect), and would not have happened anyway – the difference between the raw “before”

value and the “post.est” from the EB analysis

– Our analysis for this site also suggests that a further 0.35 casualties would not have

happened anyway due to trend

– Thus, the estimated treatment effect for this site is 26 – 1.07 – 0.35 = 24.58 casualties,

reported as –24.58 to indicate a reduction in casualties

– This is our mean estimated treatment effect; after accounting for uncertainty, our 95%

confidence interval around this mean is (–35.28, –14.57). As this is wholly negative,

we might say that our treatment effect is statistically significant

• Site 48 (ID 6536 – Askham Lane, Acomb): There were 2 observed casualties in the before
period (2013-2017) and 4 in the after period (2019-2023)
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– This gives an overall raw increase of 2 casualties

– The Bayesian model suggests we would have seen around 2.46 casualties anyway, without

a mobile safety camera, indicating an RTM effect of (+)0.46 casualties

– Our analysis for this site also suggests that 0.28 casualties would not have happened

anyway due to trend

– Thus, the estimated treatment effect for this site is –2 + 0.46 – 0.28 = 1.82 casualties,

reported as (+)1.82 to indicate an increase in casualties

– This is our mean estimated treatment effect; after accounting for uncertainty, our 95%

confidence interval around this mean is (–2.13, 3.37); as this covers zero, we might say

that any change in casualties due to the treatment (an increase here) is not statistically

significant
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Figure 8: Bars showing estimated change in casualties due to mobile safety cameras as a raw

figure (left) and as a percentage of expected collisions (right). Green bars represent a site with a

reduction in casualties due to the camera according to the model.

All estimated treatment effects from our model are displayed in Fig. 8, where we see that the

majority of sites (34 out of 49) have an estimated reduction in casualties due to the cameras in

the 5-year period following implementation. Across all mobile safety camera sites, there was a

total of 339 casualties in the before periods and 209 in the after periods, giving a raw reduction

between before and after periods of 130 casualties; our analysis suggests that a reduction of around

120 casualties might be attributable to the mobile safety cameras themselves, after accounting for

RTM and site-specific trends. The reduction owing to RTM here is considerably smaller than noted

in some other studies (for example, see our discussion in Appendix A.1), with a correspondingly

higher reduction in casualties due to the mobile safety cameras here: For example:
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• In an analysis of mobile safety cameras in the Northumbria Police Force region, Fawcett and
Thorpe (2013) cite an overall RTM/trend reduction in casualties of around 26%, with a

reduction owing to the mobile safety cameras of just 7%.

• In a previous (considerably smaller) analysis of mobile safety cameras in North Yorkshire (see
Section 1.2), an overall RTM/trend reduction in casualties of around 11% was noted, with

a reduction owing to the mobile safety cameras of around 20%.

• In this study, we have an overall TRM/trend reduction in casualties of just 7%, with a
reduction owing to the mobile safety cameras of around 36%.

Breaking down the estimated treatment effects by road class, local authority, and urban/rural

gives the results shown in Fig. 9. From this we can see that while there is some variability in

the treatment effects across the different groups, these don’t appear to be significant, particularly

when we consider the relatively small sample sizes. We can however conclude that there doesn’t

appear to be any type of site for which the treatments do not appear to have any effect. Tables 4,

5 and 6 in Appendix B.2 summarise such findings numerically, comparing mean treatment effects

for different road classifications; council areas; and local authorities, respectively. Although none of

these effects are significantly different across different groups, it is interesting to note the relative

size of treatment effects – for example, from one local authority to another (Harrogate versus

Ryedale in Table 6, for example).

Of particular interest might be the sites displayed in Tables 7 and 8 in Appendix B.2. The sites

reported in these tables all have treatment effects that are “positive”, i.e., after accounting for

RTM and trend we have estimated an increase in casualties rather than a decrease. However, these

positive treatment effects are not all significant; the treatment effect 95% confidence intervals for

many of the sites shown in Table 7 cover zero (as is the case for site 48 – Askham Lane, Acomb, as
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Figure 9: Boxplots showing the estimated change in casualties due to cameras, broken down by

site characteristics.
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discussed above), indicating no significant treatment effect. Only for three sites (as shown in Table

8) do we estimate significant increases in casualties, after mobile safety camera deployment and

after accounting for RTM and trend. These three sites – A64 Middlecave, Malton; A64 Rillington;

and B125 South of Ebbertson, might warrant further investigation.

Estimated cost of prevention

For each site, Fig. 8 and Table 3 (Appendix B.2) show the estimated treatment effect, in terms

of casualties prevented due to the deployment of mobile safety cameras. Using historic data on

casualty severity at each site, we can then estimate the proportion of casualties – prevented due

to the presence of mobile safety cameras – that would have been classified as “slight”, “serious”

or “fatal” had they indeed materialised. Multiplying these proportions by the estimated casualty

prevention figures for each site, and then by standard Department for Transport figures relating to

the average value of prevention for road traffic casualties in each severity category (Department

for Transport (2012)), leads to the estimated total value of prevention at each site as shown in the

last two columns of Table 10. Although these are based on 2012 casualty prevention valuations,

and our estimates for each site relate to varying 5-year post-deployment periods ranging from

(2013–2017) to (2018–2022), these figures are nonetheless informative: Summing across all sites,

we have an estimated total value of prevention owing to the mobile safety cameras in our study

of our £8.2 M; appropriate scaling gives a 2024 valuation of around £11.3 M. Note that these
estimates include police costs, medical and ambulance costs, property damage costs, insurance

and administration costs, and human costs including pain, grief and suffering.

2.2.2 Violations data

Table 11 in Appendix C shows the results of a negative binomial regression linking VPH (see Section

2.1.2) to prospective predictor variables, as shown in List 1 on page 7. As can be seen, almost all

variables displayed in this table appear important, with p-values less than the nominal 5% cutoff

for statistical significance. As with the discussion in Section 2.2.1 relating to Table 2, we see that,

for example:

• Relative to the baseline month (month 1, January), all months (except December) have a
higher VPH due to their positive estimated coefficients, and all monthly effects except for

March and December are significant in the model.

• Relative to the baseline local authority (Craven), all local authorities except Hambleton have
a lower VPH due to their negative estimated coefficients, although effects for Scarborough

and Richmondshire are marginal (their p-values fall between 5% and 10%).

• The variable “year” is statistically significant, with a negative estimated coefficient, indicating
a significant negative trend through time in VPH across the network.

• We can also see that in areas for which we have VPH data before and after the deployment
of mobile safety cameras, there are significant changes in VPH post-treatment.
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Although beyond the scope of the current study, we observe a correlation between data on violations

and data on casualties and collisions. A more detailed analysis of violations data, including the

use of hotspot prediction methodology such as that described in Fawcett et al. (2017), might be

of interest here: Using violations as a proxy for collisions would support a much more proactive

approach to road safety hotspot identification and subsequent treatment (e.g. with mobile road

safety cameras), as we are not dependent on waiting until collisions occur (with their associated

high societal and financial costs).

2.2.3 Summary

North Yorkshire and the City of York should feel assured that their mobile safety cameras have

been performing well, in terms of reducing collisions and casualties across the designated safety

camera sites shown in Fig. 1.

• Our analysis in Section 2.2.1 shows that, after accounting for the confounding effects of
RTM and trend, there was a reduction in casualties between our 5-year before and after

periods of around 36%, and this reduction is statistically significant.

• Although our previous collaboration (see the discussion in Section 1.2) analysed data from a
smaller subset of these sites, with shorter before and after periods, relative comparisons can

still be made; in our previous collaboration we reported just a 20% reduction in casualties

due to the mobile safety cameras.

• Reductions of between 20%–30% after accounting for RTM and trend are typical (see, for
example, Hirst et al. (2004)), so a reduction of 36% across North Yorkshire and the City of

York is a very positive outcome.

• This is especially pleasing when set against the effectiveness of mobile road safety cameras in
some other jurisdictions (for example, the 7% treatment effect observed in the Northumbria

Police Force area, as reported in Fawcett and Thorpe (2013)).

• The estimated treatment effect of 36% translates to a reduction of 120 casualties as a result
of the mobile safety cameras. An analysis of historic casualty severity data, and linking this

to standard Department for Transport figures (Department for Transport (2012)) relating to

the average value of prevention for road traffic casualties, suggests a total value of prevention

of around £11.3 M in 2024 figures.

At a site-specific level, for most sites there has been a significant decrease in casualties as a result

of the mobile safety cameras. However, some sites have been flagged in our analysis as a potential

cause for concern.

• The 15 sites Listed in Table 7 all observed an increase in casualties in the period following
mobile safety camera deployment, after accounting for RTM and trend.

• However, only for three of these sites was the increase in casualties significant:

– A64 Middlecave, Malton
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– A64 Rillington

– B12 South of Ebberston (near Electric Sub Station)

• We would recommend further investigation into the effectiveness of the mobile safety cameras
at these sites.

We believe that analyses of violations data might be crucial in implementing a more proactive

approach to the identification of future sites for mobile safety camera treatment. Our investigations

reveal a positive correlation between our data on violations and our data on collisions/casualties.

The analysis in Section 2.2.2 shows significant associations between site-wise violation rates and

various predictor variables, most notably month of the year, local authority, the year itself (i.e.

indicating a trend in violations through time) and, most crucially, significant differences in violation

rates between our before and after periods (for areas in which we have violations data for both

periods). Thus, there is potential for a statistical modelling approach similar to that used in Fawcett

et al. (2017) in which such data can be used to predict future violations and to therefore support

a proactive approach to the identification of sites for treatment. Using violations as a proxy for

collisions or casualties in this way has much lower costs – both societal and financial – than an

analysis relying on collisions or casualties.

2.3 Other Evaluations of Mobile Road Safety Cameras

In Section 2.2.1 we made some comparisons of the current B/A study of mobile safety cameras

in North Yorkshire to another evaluation of mobile safety cameras performed by the NUSRG team

in conjunction with the Northumbria Safety Camera Partnership. As discussed, once confound-

ing effects have been properly accounted for, reductions owing to road safety countermeasures

as identified from such retrospective B/A studies are typically in the range of 20%–30% (Hirst

et al. (2004)); with a reduction of around 36% in the current study and just 7% in the NUSRG

Northumbria study (Fawcett and Thorpe (2013)). We now set the current project alongside some

other studies of mobile safety cameras both in the UK and further afield. It should be noted that

examples of robust evaluations of mobile safety cameras in the literature are limited; most evalua-

tions that attempt to separate genuine treatment effects from the effects of confounders such as

RTM and trend are based on fixed speed cameras. In this report we avoid any comparisons from

B/A studies that neglect to identify confounding effects.

Christie et al. (2003) aimed to compare the various methods (circles and routes of various sizes)

for assessing local effectiveness of mobile safety cameras, and then to use the most appropriate

of those methods to investigate the effectiveness of mobile cameras by time after intervention,

time of day, speed limit, and type of road user injured, using a controlled before-after method

of investigation. They studied 101 sites in South Wales and demonstrated a notable decrease

in injurious crashes within the vicinity of the designated mobile safety camera sites. Specifically,

within 100 metres, there was a 73% reduction, and within 100-300 metres, a 24% reduction was

observed. Utilising a 500-metre route method, overall crash rates declined by 51%. The route-

based method proved more effective, particularly over a 500-metre linear route, revealing a greater

reduction in crashes compared to the circular method. This approach allowed for a more nuanced

understanding of the cameras’ impact, which remained consistent over time and across different

speed zones. Notably, pedestrian injuries saw the largest decrease, with a 78% reduction. However,
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the study’s reliance on limited traffic volume and route diversion data might have influenced the

precision of these findings, posing a potential limitation to the model used. Notice that the reported

treatment effects here are substantially larger than those reported above. We note that this study

is unlike most of the other retrospective B/A studies in the literature (including ours in this report);

properly designed, controlled B/A studies are superior to retrospective B/A studies as they can

avoid RTM biases altogether, therefore avoiding the need for post-hoc estimation of such effects.

Jones et al. (2008) evaluated road traffic accidents in Norfolk before and after the implementation

of speed cameras at 29 sites, chosen due to their high injury crash rates. Most sites had speed

limits over 60 mph, primarily outside urban areas. Following the introduction of cameras, overall

crashes on these roads fell by 1%, and fatal or serious crashes decreased by 9%. At the camera

sites, total crashes reduced by 19%, and fatal and serious crashes by 44%. This decrease was

significantly greater than what could be attributed to the regression to the mean, indicating a

positive impact of speed cameras on road safety.

Kokkuvotte (2019), in conjunction with the NUSRG team, used a standard empirical Bayes analysis

to evaluate mobile cameras deployed to 30 sites in Tallinn, Estonia. Across these sites, a reduction

on collisions of around 20% was estimated owing to the mobile safety cameras; a 17% reduction

due to RTM was estimated, with a further reduction of around 10% due to trend.
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3 Literature Review: Other Speed Enforcement Systems

3.1 Road Safety and Speed

Despite the United Kingdom having one of the highest standards of road safety in Europe, it has

been reported that annually, around 3,000 individuals lose their lives and more than 40,000 suffer

serious injuries in road accidents in the UK (Bartlett et al., 2008). A significant number of these

accidents involve inappropriate or excessive vehicle speed as a contributing factor (Barker et al.,

1998, DETR, 2000, Graham, 1997, Quimby et al., 1999, Taylor, 2001, Taylor et al., 2000)). The

link between speed and the likelihood of accidents is complex, yet extensive research indicates that

lower speeds on the roads correlates with a decrease in both the frequency and severity of accidents.

A notable meta-analysis of European studies by Finch et al. (1994) demonstrated that a reduction

in average traffic speed by one mile per hour can lead to a 5% reduction in accident rates. A safety

measure that is commonly implemented to combat excessive speeds is speed cameras, and mobile

road safety cameras are playing an increasing role here.

3.2 Confounding Factors

Most road safety schemes like speed cameras are evaluated retrospectively through B/A studies

(Hauer, 1997). These studies identify potential intervention sites, termed ‘sites with promise’,

through continuous monitoring of road networks. During a predetermined ‘before’ period, exten-

sive data, including accidents, traffic volume, and speed, are collected. Post-observation, sites

exceeding a certain accident threshold undergo treatment, followed by ‘after’ period data col-

lection. However, attributing reductions solely to interventions overlooks the RTM phenomenon

and selection bias, which can account for a 20-30% reduction in collision counts (Fawcett and

Thorpe (2013), Hauer (1980), Hirst et al. (2004)). This necessitates considering trends and other

confounding factors in evaluations.

Temporal trends also play a crucial role in road safety, influenced by factors like traffic volume and

vehicle safety improvements. Not accounting for these trends can bias treatment effect estimates

(Guo et al. (2019), Yanmaz-Tuzel and Ozbay (2010)). UK data shows varying trends in accident

severity, with a consistent number of fatalities since 2010, a decrease in slight accidents since 2014,

and a recent increase in serious injuries, partly due to reporting changes (Department for Transport,

2020). These trends highlight the importance of considering accident severity in predictive models.

Elvik (2002) shows that not controlling for confounding factors leads to an overestimation of the

effects of road safety measures.

The importance of choosing the correct model and accounting for confounding factors is shown

via the huge differences in the evaluated effectiveness of speed cameras. It is also noted that

estimates of the effectiveness of speed cameras vary substantially across different studies. In a

survey of existing literature, Wilson et al. (2010) found that after implementation of speed cameras,

the relative reduction in average speed ranged from 1-15% in the 35 studies included in the review;

the reduction of proportion of speeding vehicles ranged from 14-65%; and the reduction in road

traffic crashes ranged from 8-49%. This can even be prominent when using variations of the same

model, for instance, empirical Bayes (EB). For more information on EB, see Hauer (1997).
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Hirst et al. (2004) discuss sources of error in road safety scheme evaluation. They compare

current methods in which they include examples of the change in the effectiveness of speed camera

intervention from the inclusion of certain error factors. They calculate the reduction of accidents

from the before and after periods and compare the percentage reduction evaluated through methods

which include accounting for trends, RTM effects and traffic flow changes. Methods compared

include a simple B/A study, B/A with comparison group, “simple EB”, EB with a comparison

group and EB with comparison group and flow correction. Depending on the method used, the

treatment effect was found to reduce the number of all accidents by between 32.1–36% and for KSIs

between 42.8–48.8% over the 50 sites. When evaluating the effectiveness of any safety measure

it’s important to account for any confounding factors, such as trend and RTM. We might also

assume that the implementation of a speed camera may persuade drivers to use alternate routes

and hence, traffic volume and distances in the surrounding areas may provide key information on

the fluctuation of the number of crashes in the before and after periods.

3.3 Advantages of Speed Cameras

Although there are discrepancies in the reporting of how effective speed cameras are, there’s a

general consensus that speed cameras are indeed effective in reducing excess speed and subse-

quently the number of traffic collisions. By decreasing the number of collisions, speed cameras

also contribute to substantial economic savings through reduced social and healthcare costs. The

economic implications of road accidents are substantial, encompassing hidden social costs such

as productivity loss, medical and legal expenses, pain, suffering, and property damage. Estimates

suggest a fatal casualty as a result of a road traffic accident incurs costs of approximately £2
million; a serious casualty around £220,000; and a slight casualty £25,000. In response, a system
introduced in 2000 allowed pilot areas to fund speed and red-light cameras through fines, later

expanding nationally. Gains et al. (2005) analysed its effectiveness over three years in 24 areas,

concluding a positive cost-benefit ratio of around 4:1. By the third year, the benefits to society

from avoided injuries exceeded £221 million, compared to enforcement costs of about £54 million.

Transport Research Laboratory (2021) provide a discussion on the evolution of methodologies

for calculating collision costs, originally established by O’Reilly (1993) and Hopkins and Simpson

(1995), and suggest potential improvements for more accurately capturing the economic effects

of road traffic collisions. Building on this, Fawcett and Thorpe (2013) demonstrate that, after

adjusting for trends, the implementation of safety cameras not only saves lives but also contributes

to economic savings. Their analysis shows a reduction in total casualties translating to a median

prevention value of over £1.2 million at 56 sites over a two-year period, underscoring the significant

dual benefits of safety cameras in both human life protection and economic efficiency.

3.3.1 Fixed safety cameras

The effects of fixed speed cameras are most commonly studied. There are many examples of the

use of EB to evaluate the effectiveness of fixed speed cameras. De Pauw et al. (2014) evaluate the

traffic safety effects of 65 fixed speed cameras, installed between 2002 and 2007, on highways in

Flanders-Belgium using EB. The article illustrated an 8% decline in the occurrence of injury crashes,

which was not statistically significance. In contrast, in instances of more severe crashes involving
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serious or fatal injuries, a significant reduction of 29% was identified at the 5% significance level.

An advantageous impact was observed across all road user categories encompassing car occupants,

cyclists, moped riders, motorcyclists, and pedestrians.

Høye (2015) assessed the safety impact of 223 fixed speed cameras, in Norway, installed from

2000 to 2010 using a B/A EB method. Benefits included a 22% reduction in injury crashes

near camera sites. However, for severe cases involving fatalities or severe injuries, no significant

change was observed. The safety effects were more pronounced for cameras installed after 2004,

but diminished with increasing distance from the cameras. The method accounted for general

trends, traffic volumes, and changes in speed limits to provide a more accurate understanding of

the cameras’ effects. EB still remains in common usage with Høye (2015), Park and Abdel-Aty

(2015), Wang et al. (2017) providing examples of studies carried out in the last several years relying

on an EB methodology for inference.

Li et al. (2013) use the propensity score matching (PSM) method to evaluate the impacts of

speed limit enforcement cameras on reducing road accidents in the UK by accounting for both

confounding factors and the selection of proper reference groups. A naive B/A approach and the

EB method were compared with the PSM method. A total of 771 sites and 4787 sites for the

treatment and the potential reference groups respectively were observed for a period of 9 years in

England. Speed cameras were found to be most effective in reducing accidents up to 200 metres

from camera sites and no evidence of accident migration was found.

3.3.2 Average speed cameras

An RAC survey revealed that 79% of people believe average speed cameras are more effective at

slowing traffic than traditional fixed ones (RAC, 2018). Notably, 86% of respondents acknowl-

edge the effectiveness of average speed cameras in reducing vehicle speeds, contrasting with 70%

for fixed cameras, which are perceived to have limited impact beyond their immediate location.

Furthermore, Owen et al. (2016) provide compelling evidence on the efficacy of average speed

cameras in Great Britain. Analysing 51 sites installed between 2000 and June 2015, they observed

notable reductions in road collisions: fatal and serious collisions dropped by 25-46%, and personal

injury collisions by 9-22%. Covering 294km across 25 sites, the study also highlights a significant

decrease in installation costs — from £1.5 million in 2000 to £100,000 per mile in 2016 — sug-
gesting a potential rise in the adoption of such safety measures due to more affordable technology

and competitive market pricing. Soole et al. (2013) provide a review of multiple studies on the

effectiveness of average speed cameras across Europe and Australia.

3.3.3 TASCAR

The introduction of TASCAR significantly improved safety and traffic flow in roadwork zones on

highways. Traditional enforcement methods, such as spot speed cameras and hand-held speed

guns, often lead to sudden braking, congestion, and collisions due to their immediate and localised

nature. In contrast, the advent of SPECS Average Speed Cameras, first prototyped in 1994

on the M20 in Kent and further developed for the M62 in 2002, allowed for the calculation of

vehicles’ average speed over longer distances. This system effectively reduced the erratic driving

behaviours associated with older technologies. Recognised by the Department for Transport in
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2005 with the approval of a specific sign for SPECS controlled zones, these average speed cameras

have become the default enforcement technology in major roadworks since 2007. This approach

enables more efficient traffic management, reducing the impact on journey times while ensuring

safety within extended work zones. Over 400 major TASCAR projects in the UK have demonstrated

the benefits of this technology, allowing for smoother and safer traffic flow through construction

areas (TASCAR, 2024).

Sgt Paul Preston of Nottinghamshire Police emphasised the transformative impact of SPECS

average speed cameras, debunking the notion they serve as mere revenue tools. Instead, these

cameras have become a cornerstone for traffic safety, offering unparalleled consistency in driving

behaviour over long distances. Nottinghamshire’s early embrace of this technology, resulting in

the deployment of over 36 pairs of permanent cameras, has been pivotal in achieving significant

advancements in driving compliance and road safety. The comprehensive influence of SPECS

cameras extends beyond mere enforcement; they cultivate a driving environment characterised by

stability, minimal speed variations, and heightened focus. By diminishing the urge for competitive

lane changes and reducing response to roadside distractions, these cameras engender a collective

compliance effect, leading to safer and more predictable road conditions. This collective adherence,

coupled with an increased awareness of enforcement presence, underscores the critical role of

average speed cameras in fostering safer driving behaviours and enhancing traffic management

efficiency (Charlesworth, 2008).

3.3.4 Speed cameras as safety measures

More generally, studies show the advantage of implementing speed cameras as safety measures.

College of Policing (2017) reviewed 51 studies and found no significant difference in the effec-

tiveness of speed cameras between urban and rural areas. However, it did find some evidence of

greater reductions in crashes during rainy and wet conditions, during the day compared to night,

and on weekdays compared to weekends. Notably, fixed cameras showed a slightly greater effect

on all road traffic crashes and those resulting in fatalities or severe injuries than mobile cameras.

The full review can be found in Steinbach et al. (2016). The review included 16 new evaluations

alongside 35 from a previous review (Wilson et al., 2010). The findings demonstrate that speed

camera programs significantly reduce average speeds by 7% (95% confidence interval 0-13%), the

percentage of vehicles exceeding speed limits by 57% (95% confidence interval: 50%–64%), over-

all crashes by 19% (95% confidence interval: 14%–24%), injury crashes by 18% (95% confidence

interval: 13%–23%), and severe or fatal crashes by 21% (95% confidence interval: 13%–29%).

Notably, the review found little variation in the effectiveness of different types of speed cameras,

such as fixed versus mobile or overt versus covert. However, there was some evidence suggesting

that fixed cameras may have a slightly greater impact on reducing overall road traffic crashes and

those resulting in fatalities or severe injuries compared to mobile cameras.

The Royal Society for the Prevention of Accidents (2021) offers a detailed assessment of the role

of speed cameras in reducing road accidents, focusing on multiple studies and different types of

cameras. It underscores that higher speeds significantly increase the likelihood and severity of ac-

cidents, with 2019 data revealing a notable contribution of inappropriate speed to road accidents

in the UK. The article elaborates on various speed camera types, particularly fixed and average

speed cameras, highlighting their effectiveness in curbing speeding behaviours. Fixed speed cam-

eras showed a 70% reduction in vehicles exceeding speed limits and a 91% decrease in excessive
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speeding, while the rate of people killed or seriously injured dropped by 42% at camera sites. The

document also references multiple international studies, consistently indicating that the presence

of speed cameras leads to substantial reductions in collisions, injuries, and fatalities.

Allsop (2013) primarily highlights the significant reduction in collisions following the establishment

of speed cameras across the UK, in a report authored for the RAC Foundation. The analysis found

a 27% reduction in fatal or serious collisions (FSC) and up to a 32% decrease in personal injury col-

lisions (PIC), with an average reduction of 25% in PIC. These findings underscore the effectiveness

of speed cameras in enhancing road safety. Additionally, the study observed a reduction in speeds

around camera sites, further supporting the cameras’ role in promoting safer driving behaviours.

For the analysis, the study used a comprehensive dataset covering various regions and periods be-

fore and after the camera installations. The statistical model, accounted for year-on-year changes

and controlled for RTM. This approach effectively isolated the impact of speed cameras from other

factors, providing a robust assessment of their influence on reducing collisions and speeds.

Additionally, Li et al. (2021) focuses on assessing the effectiveness of speed cameras in the UK,

particularly examining the criteria used for selecting camera sites. The study involved 332 speed

cameras and 2513 control sites, utilising both Propensity Score Matching (PSM) and Empirical

Bayes (EB) whilst also controlling for regression to the mean and other confounding factors. The

study suggests that a site length of 500 meters is optimal for achieving the best safety effects

of speed cameras and speed cameras are most effective in reducing crashes when the minimum

number of historical killed and seriously injured collisions (KSIs) is met (criterion 1). Specifically,

sites with at least 3 KSIs in the baseline years showed the most significant reductions. The study

found that speed cameras are more effective with a risk value greater than or equal to 30, as

opposed to the recommended risk value of 22 (criterion 2). In terms of reduction in collisions,

the study found that the absolute number of Personal Injury Collisions (PICs) per km per year

reduced by 0.597 to 1.147 at sites meeting criterion 1, and by 0.313 to 0.357 at sites not meeting

it. For criterion 2, reductions in PICs per km were 0.293 for up to 500 meters, 0.203 for up to

1000 meters, and 0.186 for up to 1500 meters. The study also indicates that a road length of

500 meters is most effective, with reductions of 15.63% for criterion 1 and 16.85% for criterion

2. Overall, the study underscores the importance of careful site selection based on specific criteria

for maximising the effectiveness of speed cameras in reducing road traffic accidents and injuries.

3.4 Identification of Camera Deployment Strategy

As discussed throughout this section, there are relative strengths and drawbacks to each type of

camera deployment (here we consider fixed, mobile, and average speed cameras), which must be

considered when deciding on which type of camera to allocate where. It is generally accepted

that average speed cameras have the most significant impact in reducing the number of speed

related collisions, however these are also the most expensive camera scheme to operate, and

require the usage of a dedicated police unit to process the data (one unit per speed limit in the

area), leading to significant cost. Furthermore, because of their effectiveness, along with the fact

they allow drivers to correct their speed before the end of the camera area, they typically do not

generate much revenue in terms of speeding fines, making them difficult to justify from a financial

cost-effectiveness perspective. So whilst their effectiveness at reducing collisions is well accepted,

a strategy of solely using average speed cameras is unlikely to ever be viable due to financial

constraints, not to mention logistical issues of average speed cameras needing to be deployed on
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a road where average speed can easily be estimated, without too many junction points between

the start and end of the zone etc. In contrast to this, fixed and mobile cameras are relatively

cheap to set up and run, and because they focus on a driver’s speed at a specific point, are much

more successful in recording speed violations and therefore generating revenue through speeding

fines. This is particularly true where mobile cameras are moved around frequently, to reduce the

’halo effect’ which affects fixed (and non-moving mobile) cameras, whereby motorists are aware

of the presence of the camera, and so speed limit compliance improves within a given radius of the

camera (but is unchanged further away).

We can therefore look to combine these two camera types and effects into a single strategy, where

fixed/mobile cameras are preferred at locations which have high numbers of speed violations but

low numbers of collisions/casualties, and average speed cameras are preferred where there are high

numbers of collisions relative to the number of violations. This allows the fixed/mobile cameras

to target high violation areas, and in the process generate revenue to finance the average speed

cameras which can target areas where the threat to safety is at its highest.
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Appendices

A Methodology for the Evaluation of Road Safety Interven-

tions

A.1 Regression To (the) Mean (RTM)

When evaluating safety schemes, it is important to take into consideration trends and many other

confounding factors such as RTM. In road safety, practitioners make decisions on the implemen-

tation of safety schemes based upon data. However, issues in collecting data cause problems with

the implementation or retention of safety schemes. Common issues include problems with sparsity

of data, temporal trends or regression to the mean (RTM). Regression to the mean is a concept

which refers to the fact that when a sample from a random variable is extreme, eventually the

following samples will return closer to the mean value. This can significantly impact road safety

studies. The RTM phenomenon is well-known and well-documented (Fawcett and Thorpe, 2013,

Galton, 1889, Hauer, 1980).

When selecting sites for safety interventions, areas with unusually high collision or casualty rates

are often chosen. However, these high rates might partly be due to random fluctuations, and

over time, they might naturally decrease to the average level, a process known as RTM. Without

accounting for RTM, any reduction in accidents after implementing a safety measure, such as

speed cameras, could be mistakenly attributed entirely to the intervention, when in fact, some of

the reduction would have occurred naturally.

To accurately assess the impact of safety interventions, it’s crucial to distinguish the effects of

RTM from the actual effects of the intervention. This is typically done by using control groups -

sites similar to the intervention sites but without the safety measures. By comparing the before-

and-after changes in collision or casualty rates at both the intervention and control sites, analysts

can more reliably determine the portion of the change that can be attributed to the intervention,

as opposed to RTM. Incorporating an understanding of RTM into road safety analysis ensures a

more accurate and reliable evaluation of safety interventions, preventing overestimation of their

effectiveness and leading to better-informed decisions in road safety management.

The first significant investigation into the RTM effect, in the context of road safety, was by Ezra

Hauer (Hauer, 1980, 1986) and can be defined in this context as selection bias when a treatment

is applied non-randomly based on the responses on the individuals that are treated (see also, Elvik

(1997), Mountain et al. (1998)). The RTM effect varies but in some instances, the reduction in

collision counts owing to RTM has been shown to be as much as 20–30% (Elvik, 2002, Fawcett

and Thorpe, 2013, Hauer, 1997, Mountain et al., 1998). This might be viewed as the exaggerated

effects of the road safety intervention, as often reported by police or in the media (Brooker and

North, 2007). Hence, it is vital that this is accounted for when evaluating schemes when almost

a third of the reduction could be inevitable.
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A.2 Empirical Bayes/Full Bayes Methodology

It is common that B/A evaluations are performed via an empirical Bayes (EB) approach, proposed

by Hauer (1997). In fact, in recent years this has become the ‘gold standard’ in road safety scheme

evaluation. In the EB method for evaluating the effectiveness of safety cameras, the analysis is

not only confined to the locations where safety cameras are deployed (’treatment sites’) but also

includes data from similar locations without safety cameras (’control sites’). These control sites

are chosen for their similarities in traffic and road characteristics to the treatment sites, yet remain

unaffected by the deployment of safety cameras. Data on accidents, incidents or collisions are

collected from both sets of sites for periods before and after the safety cameras are deployed. The

method then involves a detailed comparison of changes in accident, collision or casualty rates at the

treatment sites against those at the control sites. This comparison is crucial as it helps to isolate

the specific effect of safety cameras from other influencing factors like changes in traffic volume

or road conditions. Additionally, the EB method incorporates prior knowledge or assumptions

about accident rates and traffic patterns, both for treatment and control sites. This blending

of observed data with established patterns allows for a more refined estimation of the camera’s

effectiveness. By comparing the adjusted accident/collision/casualty rates from the treatment and

control sites, the method provides a comprehensive and accurate assessment of the true impact of

safety cameras on road safety, ensuring that the conclusions drawn about their effectiveness are

robust and reliable.

When using EB, we use standard techniques to estimate the regression coefficients in the accident

prediction model (APM).This model helps us understand the relationship between various factors

and the number of collisions, as illustrated by the equation:

µ = exp {β0 + β1xspeedl imit + β2xtraf f icvolume + · · · } (1)

Here, the regression coefficients (βi) are initially estimated using maximum likelihood, and these

estimates are then incorporated into the Bayesian analysis within the EB framework.

From this point forward our discussion focuses on casualties, as it is changes in casualties that

we assess in Section 2.2.1. We let Yj represent casualty counts at site j in the before period, and

we assume that Yj (taking observations yj) is Poisson-distributed with mean mj . In a Bayesian

analysis, we then adopt a prior distribution for the parameter in our model – here, the Poisson rate

mj at each site j , which we assume itself is gamma-distributed with mean µj . A Bayesian analysis

then incorporates prior information into the analysis, along with our observed data (casualty counts

in the before period), to obtain our posterior distribution; our updated beliefs about the rate mj
having combined our prior beliefs with the observed data.

This is where the reference sites usually come into play; the model in Eq. 1 is constructed using

data at the reference sites, before being applied to data at the treated sites – essentially giving an

estimate of casualty counts at the treated sites but based on data observed at sites that were not

treated, and therefore sites with casualty counts that are not excessively high. This estimate is

then combined with the actual observed casualty count in the before period, to give the Empirical

Bayes estimate of casualty frequency :

yEB,j = Mean(mj) = αjµj + (1− αj)yj ,

where the weight αj is estimated as part of the initial regression analysis. Note that this is a

weighted sum of what we might expect to see at site j , based on information at the references
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sites, and what we have actually observed; any abnormally high observations will be tempered by

what we expect through the regression modelling part of the analysis.

In a truly Bayesian setting, we have the ability to include prior/expert knowledge about the param-

eters to help inform the model, and simulation-based procedures might be needed to estimate all

parameters within a ‘fully Bayesian’ (FB) context. Doing so could more reaListically quantify our

uncertainty in estimates of RTM and treatment effects by acknowledging our uncertainty in the

estimated APM, although for the purposes of our analysis in this report we use adopt standard EB

procedures, focusing on average changes in casualties due to treatment.

Previous reluctance to embrace an FB methodology in industry can be explained by the enhanced

level of computing and statistical ability needed to implement this method, fortunately advances

of computing and software applications greatly improve the accessibility and hence, FB methods

are becoming more commonplace (El-Basyouny and Sayed, 2012, Heydari et al., 2014). As an

example, Bayesian methodology is used by PTV group in their software VISUM and by Gateshead

council through RAPTOR. The RAPTOR suite of software applications was developed by the

Newcastle road safety team to allow practitioners to implement Bayesian methods, without any

technical or computational requirements (Matthews et al., 2019). The advantage stems from

use of diffuse prior distributions for the coefficients in the regression equation. This allows for

more reaListic standard deviations and doesn’t accept the estimated regression coefficients as

fixed (known) values. In addition, it also allows for change of priors omitting the need for the

Poisson-gamma conjugacy. Despite FB methods being accepted in the literature for a while, with

Schlüter et al. (1997) providing support for a hierarchical model to replace EB in the 1990s, EB

still remains in common usage currently with Høye (2015), Park and Abdel-Aty (2015), Wang

et al. (2017) providing examples of studies carried out in the last several years still relying on an

EB methodology for inference. For more examples in favour of a fully Bayes analyses, see Kitali

and Sando (2017), Lan et al. (2009), Yanmaz-Tuzel and Ozbay (2010).
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B Empirical Bayes Results

B.1 Regression Model

Estimate Std. Error z value Pr(>|z|)
(Intercept) 74.6711 35.8659 2.08 0.0373

Road ClassB - Class -0.4694 0.1636 -2.87 0.0041
Road ClassC - Class -2.0482 0.8080 -2.54 0.0112

Road ClassUnclassified -0.6016 0.1764 -3.41 0.0006
Local AuthorityHambleton -0.2460 0.2317 -1.06 0.2883
Local AuthorityHarrogate 0.2918 0.1846 1.58 0.1139

Local AuthorityRichmondshire -0.3143 0.4929 -0.64 0.5237
Local AuthorityRyedale -0.4409 0.1994 -2.21 0.0270

Local AuthorityScarborough 0.4989 0.2146 2.32 0.0201
Local AuthoritySelby -0.2374 0.2704 -0.88 0.3799
Local AuthorityYork 0.1286 0.2451 0.52 0.5998
UrbanRuralUrban 0.4177 0.1376 3.04 0.0024

Year -0.0370 0.0179 -2.07 0.0389

Table 2: Regression table showing results for step 1. Shown here are the estimated regression

coefficients, their standard errors, and their p-values, where p-values less than 0.05 indicate a

statistically significant predictor variable.

B.2 Empirical Bayes Analysis

Site before after post.est RTM trend.effect treat.est Lower Upper treat.perc

1 3.00 0.00 3.40 0.40 -0.08 -3.33 -6.68 -0.93 -100.00
2 9.00 3.00 8.54 -0.46 0.60 -6.14 -12.16 -1.38 -67.17
3 14.00 7.00 13.63 -0.37 -0.11 -6.51 -13.41 -0.40 -48.20
4 5.00 2.00 4.89 -0.11 -0.09 -2.80 -6.32 0.33 -58.31
5 0.00 8.00 0.74 0.74 -0.09 7.35 4.50 7.93 1125.73
6 11.00 9.00 10.64 -0.36 -0.79 -0.85 -5.91 4.20 -8.60
7 10.00 0.00 9.12 -0.88 -0.17 -8.95 -14.91 -4.56 -100.00
8 1.00 0.00 1.52 0.52 0.08 -1.60 -4.40 -0.27 -100.00
9 6.00 10.00 5.68 -0.32 -0.15 4.48 1.21 8.01 81.05
10 1.00 1.00 1.65 0.65 -0.31 -0.34 -3.37 0.73 -25.27
11 1.00 0.00 1.58 0.58 -0.01 -1.57 -5.02 -0.31 -100.00
12 1.00 0.00 1.51 0.51 -0.12 -1.40 -4.02 -0.25 -100.00
13 6.00 0.00 5.20 -0.80 0.59 -5.79 -9.45 -2.14 -100.00
14 6.00 0.00 6.24 0.24 -0.46 -5.78 -10.83 -2.45 -100.00
15 3.00 0.00 2.99 -0.01 -0.19 -2.80 -5.97 -0.83 -100.00
16 0.00 0.00 0.64 0.64 -0.04 -0.59 -2.61 -0.05 -100.00
17 8.00 8.00 7.93 -0.07 -0.25 0.32 -5.28 4.42 4.11
18 3.00 0.00 3.38 0.38 -0.30 -3.07 -6.22 -0.87 -100.00
19 7.00 9.00 7.41 0.41 -0.24 1.82 -4.43 .62 25.39
20 1.00 1.00 1.58 0.58 -0.30 -0.28 -2.46 0.79 -22.14
21 7.00 2.00 6.64 -0.36 0.19 -4.83 -9.41 -0.84 -70.71
22 4.00 4.00 4.04 0.04 -0.34 0.31 -3.35 2.74 8.29
23 13.00 10.00 12.13 -0.87 -0.19 -1.94 -7.55 3.86 -16.22
24 3.00 2.00 3.34 0.34 0.11 -1.45 -5.51 0.95 -42.01
25 6.00 2.00 6.23 0.23 -0.07 -4.17 -9.95 -0.70 -67.56
26 1.00 4.00 1.62 0.62 -0.21 2.59 -0.87 3.70 184.52
27 0.00 1.00 0.75 0.75 -0.07 0.32 -2.77 0.92 46.75
28 1.00 1.00 0.82 -0.18 -0.01 0.18 -1.57 0.84 22.38
29 4.00 0.00 3.95 -0.05 0.02 -3.97 -8.22 -1.41 -100.00
30 27.00 16.00 25.50 -1.50 -0.78 -8.72 -18.93 -0.64 -35.28
31 0.00 1.00 0.73 0.73 -0.20 0.46 -1.74 0.94 85.79
32 4.00 4.00 4.42 0.42 -0.32 -0.10 -4.30 2.57 -2.55
33 5.00 3.00 5.16 0.16 -0.60 -1.55 -4.87 1.42 -34.12
34 33.00 7.00 31.93 -1.07 -0.35 -24.58 -35.28 -14.57 -77.83
35 37.00 17.00 35.63 -1.37 -1.46 -17.18 -28.08 -6.85 -50.26
36 10.00 1.00 9.85 -0.15 -0.42 -8.43 -14.54 -3.7 -89.40
37 16.00 18.00 14.51 -1.49 -0.73 4.22 -2.23 10.20 30.64
38 3.00 0.00 3.05 0.05 -0.06 -3.00 -6.93 -0.97 -100.00
39 4.00 2.00 3.72 -0.28 0.09 -1.81 -6.46 0.54 -47.57
40 21.00 9.00 20.15 -0.85 0.75 -11.90 -21.48 -4.20 -56.94
41 1.00 3.00 1.48 0.48 -0.08 1.60 -1.42 2.73 114.11
42 13.00 3.00 12.82 -0.18 -0.13 -9.69 -17.31 -4.11 -76.37
43 5.00 13.00 5.21 0.21 -0.97 8.77 5.05 11.41 207.11
44 7.00 6.00 6.56 -0.44 -0.45 -0.11 -4.33 3.43 -1.86
45 14.00 10.00 13.84 -0.16 -0.21 -3.63 -11.33 2.26 -26.66
46 1.00 1.00 1.47 0.47 -0.03 -0.43 -3.63 0.71 -30.24
47 0.00 2.00 0.67 0.67 -0.07 1.41 -1.42 1.93 237.62
48 2.00 4.00 2.46 0.46 -0.28 1.82 -2.13 3.37 83.73
49 1.00 5.00 1.37 0.37 -0.08 3.71 1.32 4.77 288.17

Table 3: Full results for the Empirical Bayes analysis, with discussion provided in Section 2.2.1.
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Road Class mean(treat.est)

1 A - Class -2.62

2 B - Class -2.79

3 C - Class 0.01

4 Unclassified -2.04

Table 4: Mean treatment effects by road classification.

Council Area mean(treat.est)

1 City of York Council -2.76

2 North Yorkshire Council -2.43

Table 5: Mean treatment effects by council area.

Local Authority mean(treat.est)

1 Craven -0.71

2 Hambleton -1.11

3 Harrogate -7.15

4 Richmondshire -2.81

5 Ryedale -0.04

6 Scarborough -4.49

7 Selby -1.01

8 York -2.76

Table 6: Mean treatment effects by local authority.

ID Location Road Class Local Authority Council Area UrbanRural Before After treat.est Treat.low Treat.upp

1 6065 A64 Middlecave, Malton A - Class Scarborough North Yorkshire Council Rural 0.00 8.00 7.35 5.34 7.99
2 6352 A65 Skipton (Overbridge White Hills Ln) B - Class Craven North Yorkshire Council Rural 6.00 10.00 4.48 -0.39 7.82
3 6206 A1237 Westfield A - Class York City of York Council Rural 8.00 8.00 0.32 -5.53 4.52
4 6428 A165 Osgodby A - Class Scarborough North Yorkshire Council Urban 7.00 9.00 1.82 -4.03 5.94
5 6237 A63 Hemingbrough Unclassified Selby North Yorkshire Council Urban 4.00 4.00 0.31 -3.66 2.84
6 6191 Market Flat Lane, Knaresborough Unclassified Harrogate North Yorkshire Council Urban 1.00 4.00 2.59 -0.08 3.86
7 6075 A6108 High Common A - Class Harrogate North Yorkshire Council Urban 0.00 1.00 0.32 -1.78 0.99
8 6188 Tame Bridge, Stokesley C - Class Hambleton North Yorkshire Council Rural 1.00 1.00 0.18 -1.37 0.92
9 6208 B6479 Horton in Ribblesdale A - Class Craven North Yorkshire Council Urban 0.00 1.00 0.46 -1.20 0.99
10 6411 A61 South Kilvington Village (South) A - Class Hambleton North Yorkshire Council Rural 16.00 18.00 4.22 -3.11 10.00
11 6431 Main Street, Amotherby B - Class Ryedale North Yorkshire Council Urban 1.00 3.00 1.60 -1.07 2.86
12 4259 A64 Rillington A - Class Ryedale North Yorkshire Council Urban 5.00 13.00 8.77 4.69 11.48
13 6268 Main Street, Helperby North Unclassified Hambleton North Yorkshire Council Urban 0.00 2.00 1.41 -0.42 1.99
14 6536 Askham Lane, Acomb Unclassified York City of York Council Urban 2.00 4.00 1.82 -1.37 3.59
15 6385 B1258 South of Ebbertson B - Class Ryedale North Yorkshire Council Rural 1.00 5.00 3.71 1.26 4.87

Table 7: Sites with positive estimated treatment effect, that is, treatment effects indicating an

increase in casualties after RTM and trend.

Site ID Location Road Class Local Authority Council Area UrbanRural Before After treat.est Treat.low Treat.upp

1 5.00 6065 A64 Middlecave, Malton A - Class Scarborough North Yorkshire Council Rural 0.00 8.00 7.35 5.34 7.99
2 43.00 4259 A64 Rillington A - Class Ryedale North Yorkshire Council Urban 5.00 13.00 8.77 4.69 11.48
3 49.00 6385 B1258 South of Ebbertson B - Class Ryedale North Yorkshire Council Rural 1.00 5.00 3.71 1.26 4.87

Table 8: Sites with 95% treatment effect confidence intervals all above 0 (i.e. significant increase

in casualties after the removal of RTM and trend).

ID Location Before After treat.est Treat.low Treat.upp

1 6065 A64 Middlecave, Malton 0.00 3.00 1.48 -1.12 2.80
2 4259 A64 Rillington 5.00 10.00 5.89 2.37 8.33
3 6385 B1258 South of Ebbertson 1.00 2.00 0.76 -0.93 1.73

Table 9: Results of collisions based EB analysis for 3 ’definitely positive’ sites from casualties

analysis.
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ID Fatal.Prop Serious.Prop Slight.Prop Fatal.Change Serious.Change Slight.Change Cost2012 Cost2024

1 4023 0.00 0.11 0.89 -0.00 -0.37 -2.96 114516.15 156738.26
2 4025 0.00 0.08 0.92 -0.00 -0.51 -5.63 181098.34 247869.29
3 6050 0.00 0.21 0.79 -0.00 -1.36 -5.16 335932.61 459790.97
4 4013 0.17 0.00 0.83 -0.47 -0.00 -2.33 828387.08 1133813.39
5 6065 0.00 0.50 0.50 0.00 3.67 3.67 -757663.30 -1037013.76
6 4095 0.03 0.43 0.54 -0.02 -0.37 -0.46 116023.47 158801.32
7 6027 0.11 0.11 0.78 -0.99 -0.99 -6.96 1986614.36 2719079.08
8 6018 0.00 0.50 0.50 -0.00 -0.80 -0.80 164978.40 225805.94
9 6352 0.02 0.15 0.83 0.09 0.65 3.73 -338535.68 -463353.78
10 6095 0.21 0.14 0.64 -0.07 -0.05 -0.22 135068.40 184868.12
11 4206 0.00 0.38 0.62 -0.00 -0.59 -0.98 126838.82 173604.29
12 4012 0.00 0.80 0.20 -0.00 -1.12 -0.28 217982.21 298352.25
13 6251 0.12 0.62 0.25 -0.72 -3.62 -1.45 1945551.96 2662876.96
14 6153 0.00 0.17 0.83 -0.00 -0.96 -4.82 255684.01 349954.71
15 6285 0.00 0.30 0.70 -0.00 -0.84 -1.96 189552.30 259440.23
16 4204 0.00 0.00 1.00 -0.00 -0.00 -0.59 8737.92 11959.59
17 6206 0.10 0.30 0.60 0.03 0.10 0.19 -75500.96 -103338.16
18 4110 0.00 0.00 1.00 -0.00 -0.00 -3.07 45357.48 62080.78
19 6428 0.00 0.16 0.84 0.00 0.29 1.53 -78858.16 -107933.17
20 4168 0.00 0.00 1.00 -0.00 -0.00 -0.28 4191.84 5737.37
21 6088 0.00 0.25 0.75 -0.00 -1.21 -3.62 284556.56 389472.56
22 6237 0.00 0.12 0.88 0.00 0.04 0.27 -10877.87 -14888.54
23 6062 0.05 0.29 0.67 -0.09 -0.55 -1.29 281685.92 385543.51
24 6566 0.00 0.00 1.00 -0.00 -0.00 -1.45 21387.24 29272.72
25 6079 0.00 0.00 1.00 -0.00 -0.00 -4.17 61490.16 84161.58
26 6191 0.00 0.00 1.00 0.00 0.00 2.59 -38287.44 -52404.02
27 6075 0.25 0.00 0.75 0.08 0.00 0.24 -139833.48 -191390.08
28 6188 0.00 0.00 1.00 0.00 0.00 0.18 -2701.08 -3696.97
29 6076 0.00 0.40 0.60 -0.00 -1.59 -2.38 339422.55 464567.64
30 6267 0.01 0.20 0.79 -0.11 -1.70 -6.91 619819.24 848346.59
31 6208 0.00 0.33 0.67 0.00 0.15 0.31 -34031.38 -46578.75
32 6468 0.00 0.23 0.77 -0.00 -0.02 -0.08 5775.91 7905.49
33 6538 0.03 0.11 0.86 -0.04 -0.17 -1.34 123563.79 169121.76
34 6151 0.00 0.07 0.93 -0.00 -1.78 -22.80 677464.56 927245.75
35 6392 0.00 0.07 0.93 -0.00 -1.24 -15.94 472290.83 646424.46
36 6441 0.00 0.09 0.91 -0.00 -0.77 -7.67 260017.04 355885.32
37 6411 0.00 0.08 0.92 0.00 0.33 3.89 -121158.82 -165830.08
38 4163 0.00 0.17 0.83 -0.00 -0.50 -2.50 132395.76 181210.07
39 6245 0.00 0.25 0.75 -0.00 -0.45 -1.36 107012.56 146468.09
40 4008 0.00 0.07 0.94 -0.00 -0.77 -11.13 311351.90 426147.35
41 6431 0.00 0.18 0.82 0.00 0.29 1.31 -75021.81 -102682.35
42 4120 0.00 0.16 0.84 -0.00 -1.55 -8.14 417149.79 570952.92
43 4259 0.00 0.16 0.84 0.00 1.40 7.36 -377315.23 -516431.35
44 6216 0.00 0.16 0.84 -0.00 -0.02 -0.10 4863.29 6656.39
45 4155 0.03 0.17 0.81 -0.10 -0.61 -2.93 331329.98 453491.34
46 4137 0.00 0.50 0.50 -0.00 -0.22 -0.22 44750.39 61249.86
47 6268 0.00 0.33 0.67 0.00 0.47 0.94 -103641.03 -141853.47
48 6536 0.00 0.00 1.00 0.00 0.00 1.82 -26907.48 -36828.27
49 6385 0.08 0.31 0.61 0.29 1.14 2.28 -739655.96 -1012367.12

Table 10: Historic severity trends by site, estimated change is casualty numbers by severity, total

cost saved by treatment in 2012 figures, and adjusted for 2024 inflation (positive cost = saving).

C Violations Results

Estimate Std. Error z value Pr(>|z|)
(Intercept) 221.5303 7.4748 29.64 0.0000
month2 0.1115 0.0451 2.47 0.0135
month3 0.0613 0.0440 1.39 0.1639
month4 0.1499 0.0418 3.59 0.0003
month5 0.1452 0.0415 3.50 0.0005
month6 0.2149 0.0416 5.16 0.0000
month7 0.1921 0.0414 4.64 0.0000
month8 0.2661 0.0418 6.37 0.0000
month9 0.1815 0.0425 4.27 0.0000
month10 0.1675 0.0421 3.98 0.0001
month11 0.1313 0.0443 2.96 0.0031
month12 -0.0026 0.0449 -0.06 0.9529

areaHambleton 0.3439 0.0705 4.88 0.0000
areaHarrogate -0.0786 0.0315 -2.50 0.0126

areaRichmondshire -0.3846 0.2200 -1.75 0.0804
areaRyedale -0.5403 0.0706 -7.66 0.0000

areaScarborough -0.1474 0.0848 -1.74 0.0820
areaSelby -0.7355 0.0376 -19.57 0.0000
areaYork -1.1654 0.0910 -12.81 0.0000

year -0.1109 0.0037 -29.85 0.0000
TreatedTRUE -0.5943 0.0537 -11.07 0.0000

logmin 1.1564 0.0203 56.94 0.0000
areaHambleton:TreatedTRUE 0.3780 0.0760 4.98 0.0000
areaRyedale:TreatedTRUE 0.9805 0.0746 13.14 0.0000

areaScarborough:TreatedTRUE 0.3563 0.0941 3.79 0.0002
areaYork:TreatedTRUE 0.6397 0.0974 6.57 0.0000

Table 11: Regression table showing result for a regression model on the violations dataset.
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